请安装我们的客户端
更新超快的免费小说APP
添加到主屏幕
请点击,然后点击“添加到主屏幕”
条件下饲养其寿命不低于正常鼠。如果在通常的饲养条件下切除新生小鼠的胸腺,死于3月龄左右,若将其置于无菌的环境中,大多数可以活得更长久。可见免疫系统虽然对生存期可以产生影响,但并非决定因素。免疫学说将免疫系统说成是衰老的领步者及根本原因所在,然而至今尚无明显的理由说明免疫系统随龄退化的原因,免疫系统的增龄改变也均是衰老导致的多种效应的表现,应该视为整体衰老的一部分,而不是衰老的始动原因。
(五)端粒学说
端粒学说由Olovnikov提出,认为细胞在每次分裂过程中都会由于DNA聚合酶功能障碍而不能完全复制它们的染色体,因此最后复制DNA序列可能会丢失,最终造成细胞衰老死亡。端粒是真核生物染色体末端由许多简单重复序列和相关蛋白组成的复合结构,具有维持染色体结构完整性和解决其末端复制难题的作用。端粒酶是一种逆转录酶,由RNA和蛋白质组成,是以自身RNA为模板,合成端粒重复序列,加到新合成DNA链末端。在人体内端粒酶出现在大多数的胚胎组织、生殖细胞、炎性细胞、更新组织的增生细胞以及肿瘤细胞中。正因如此,细胞每有丝分裂一次,就有一段端粒序列丢失,当端粒长度缩短到一定程度,会使细胞停止分裂,导致衰老与死亡。大量实验说明端粒、端粒酶活性与细胞衰老及永生有着一定的联系。第一个提供衰老细胞中端粒缩短的直接证据是来自对体外培养成纤维细胞的观察,通过对不同年龄供体成纤维细胞端粒长度与年龄及有丝分裂能力的关系观察到随着增龄,端粒的长度逐渐变短,有丝分裂的能力明显渐渐变弱;Hastie发现结肠端粒限制性片段的长度随供体年龄增加逐渐缩短,平均每年丢失33bp的重复序列;植物中不完整的染色体在受精作用中得以修复,而不能在已经分化的组织中修复,这在较为高等的真核生物中也证实了体细胞中端粒酶的活性受抑制;精子的端粒要比体细胞长,体细胞缺失端粒酶活性就会逐渐衰老,而生殖细胞系的端粒却可以维持其长度;转化细胞能够通过端粒酶的活性完全复制端粒以得永生。端粒学说
但是许多问题用端粒学说还不能解释。体细胞端粒长度与有丝分裂能力呈正比,这一点实验已经证实了,而不同的体细胞其有丝分裂能力是不尽相同的,胃肠黏膜细胞的分裂增殖速度就比较快,神经细胞分裂的速度就比较慢。曾有人就不同年龄供体角膜内皮细胞的端粒长度进行研究发现角膜内皮细胞内端粒长度长期维持在一个较高的水平,而端粒酶却不表达。另外,Kippling发现,鼠的端粒比人类长近5-10倍,寿命却比人类短的多。这些都提示体细胞端粒长度与个体的寿命及不同组织器官的预期寿命并非一致。生殖细胞的端粒酶活性长期维持较高的水平却不会象肿瘤那样无限制分裂繁殖;端粒长度由端粒酶控制,那何种因素控制端粒酶呢?生殖细胞内端粒酶活性较高,为什么体细胞中没有较高的端粒酶活性。看来端粒的长度缩短是衰老的原因还是结果尚需进一步研究。
(六)线粒体理论(MitochondrialTheory)
Wallace在1999年提出线粒体DNA(mtDNA)的突变会随年龄积累,这也是造成细胞衰老的重要因素。之后,有许多文献都反应了这点。研究中发现,细胞年龄的增长与细胞中细胞色素C氧化酶(cytochromecoxidase,COX,一种和细胞呼吸直接相关的蛋白)缺陷正相关,而这是由mtDNA突变导致的,它们在人类肌肉细胞、脑细胞、肠细胞等的存在均有报道。若细胞中的mtDNA突变达到较高水平,即能阻碍细胞ATP生产、生物能量的供应。
(七)蛋白质改变理论与废料积累理论(AlteredProteinsTheoryandWasteAccumulationTheory)
生命过程中,蛋白质的新陈代谢是必不可少的。为了保护细胞的正常功能,新生蛋白质的同时会去除损坏或多余的蛋白质,这是显而易见的。诸多医学领域的研究已经发现,蛋白质的代谢能力会随着年龄推移而下降,其中还包括一系列老年疾病,如白内障、阿尔茨海默氏病、帕金森氏病。Carrard等人在2002年发布了“蛋白酶、蛋白质的活性随着年龄增长而功能下降”的证据。之后在2003年,Soti和Csermely也发现了分子伴侣蛋白与衰老的关系,即分子伴侣蛋白会因为人体进入衰老而活性降低,或者反过来说,因为分子伴侣蛋白活性降低,所以人体进入衰老。随后,Terman和Brunk进一步认为,它们仅是细胞废料中的一部分,更广的视角应在于细胞的“垃圾处理”过程。
(八)衰老网络理论(NetworkTheoriesofAging)
通过以上理论,我们已经可以看到细胞衰老存在多种复杂的机制。在实践中,大多数的研究仍主要集中在单一的机制上。这显然限制了对衰老过程的观察。所以,Kirkwood等人提出衰老网络理论,认为多种生命机制和细胞病变共同造成了衰老,它们之间有相互协同的作用,网络理论着重研究它们之间的作用。比如:mtDNA突变随年龄逐渐积累,导致ATP含量逐步下降同时活性氧(ReactiveOxygenSpecies,ROS)增多。这也使得细胞内蛋白质应激损耗,并且积累废料。这些损耗可以由增殖活跃的组织细胞通过有丝分裂进行稀释,但同时活跃的DNA复制也使得体细胞突变与端粒侵蚀频率增高。
这种网络观察法的优势是能涵盖各种细胞衰老的机制,而且也适用于不同的物种之间的差异,或特定类型的分子损伤。
衰老是为了避开癌症?
以上理论虽然都能解释衰老是细胞内外损伤造成的结果,但它们还无法绕开另一个问题,即细胞自我凋亡或自噬。不同于细胞坏死,在一般情况下,组织中的细胞能够被生物信号诱导主动进入细胞凋亡程序。事实上,年老的器官细胞里,凋亡水平同样是增加的,这又是为什么?
不少研究认为,它们也是由于更长久的细胞损伤积累导致的。但更可能的解释是,细胞凋亡反映的是一种保护机制。这个重要的问题涉及到细胞对损伤的反应。在某些情况下,特别是增殖型组织的干细胞,如骨髓和肠上皮细胞等,受损的细胞将构成明显的肿瘤威胁。这大概是为什么这样的细胞往往会通过启动细胞凋亡来应对DNA损伤的响应。如果这样解释的话,衰老就能看做是一种对癌症的保护机制,而不是衰老导致癌症。其中的因果箭头将被颠倒。
生命在衰老和癌症之间做出权衡,即表现为删除和维护受损的细胞之间的平衡。对此,Tyner等人在2002年发表的研究中,采用了p53突变型小鼠。这种基因突变的小鼠被大大降低了癌症发病率。但同时,他们也表现出更快的衰老,包括肝、肾、脾、****等各种组织细胞的衰老加速,同时也有皮肤的厚度、毛发生长速度、伤口愈合速度等表型的下降。
(未完待续。)